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Master Equation Techniques for Exciton Motion, 
Relaxation, Capture, and Annihilation 

V. M.  Kenkre ~ 

Techniques developed recently for the study of exciton dynamics in molecular 
solids are discussed. They include master equation methods for the analysis of 
prerelaxation energy transfer, the generalized master equation approach to 
coherence in exciton motion, and the defect technique as applied to exciton 
trapping and annihilation. 

KEY WORDS: Master equations; trapping; annihilation; relaxation; exci- 
ton dynamics; memory functions. 

1. INTRODUCTION: GMEs AND MEMORY FUNCTIONS 

Frenkel excitons, produced in molecular crystals as a result of optical 
absorption, lead a rather eventful life. They move, undergo vibrational 
relaxation, are captured by traps, participate in mutual annihilation when 
in pairs, and die, radiatively or otherwise. A number of master equation 
techniques have been found to be naturally applicable to the study of these 
excitons, and we present here a brief description of some of them, in the 
form of an overview. 

Details of the characteristics of Frenkel excitons or of molecular 
crystals may be found elsewhere. (1,2) Suffice it to state that the physics of 
the system makes it appropriate and practical to use the (real) space of the 
sites of a (crystalline) lattice for the description of the motion. The central 
quantity is most often the probability Pro(t) that the exciton occupies site m 
at time t. A natural evolution equation describing decay with lifetime ~- and 
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motion with transition rates F,.. is 

dPm(t) Pm(t) 
+ - ~ EFmnP,(t ) - F, mPm(t)] (1) 

q" n 

Equation (1) is, however, restricted to incoherent motion. A fundamental 
concern in this field being the degree of coherence in exciton transport, we 
employ the generalized master equation (GME) 

dPm(t) e,.(t) 
fotdt ' [~//'mn(t-- t')P~(t') 7#.m(t--  t')Pm(t')] T + - - ~  ~ 

(2) 
rather than (1) as our starting point. The GME (2) reduces to the ordinary 
Master equation (1) for large times (except in special cases) and is capable 
of describing motion with arbitrary degree of coherence. It is thus particu- 
larly useful for studies of exciton motion at low temperatures and/or  at 
short times as in picosecond observations. As is well known, the GME is an 
exact consequence of microscopic dynamics (3'4~ for certain initial condi- 
tions. These may be either completely localized (3) or completely delocal- 
ized. (s) The latter result (5~ is relatively new and is nontrivial because 
selection rules for optical absorption naturally result in largely delocalized 
initial placement of the exciton. A driving term is appended to the GME in 
the intermediate case as when exciton wavepackets of finite size and 
dispersion are formed. 

Equations like (2) are generally used with phenomenological memory 
functions 7e / / ( t ) .  Our own emphasis has been, instead, on deriving them 
from the microscopic dynamics of the exciton. Exact expressions for them 
have been presented (6) for crystals of arbitrary dimensionality and structure 
as also for systems including phenomenological baths and for those whose 
evolution is governed by various stochastic Liouville equations. Direct 
connections of 7r (t) to optical spectra have been established (7) and used 
to extract the former from measurements of the latter without the use of 
model assumptions. The interplay of spectral features such as zero-phonon 
lines and sidebands with multiple-time-constant memories has been stud- 
ied ( 8~ and correction factors (9) neglected in the traditional analysis ( t0~ have 
been obtained explicitly. To dispel the notion that 7#(t) 's  are phenomeno- 
logical constructs and to stress the availability of these microscopically 
calculated memory functions, we display a composite of some of these 
treatments: 

c b - a t  ~#/mn(t) -- [ "z//~rnn(t) ][ ~bm, (t) ]e (3) 

In (3) the coherent memory function 7r (t) is given by its Laplace and 
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(discrete) Fourier transform ~ {  (c) as (6'll) 

~/~f~(e) ( ( 1 / N ) ~ ; [ e + i ( V k +  q v q ) ]  ,}-1 = - - ( 4 )  

q 

where V k is the Fourier transform of the intersite matrix element Vmn, the 
dimensionality is arbitrary (k, q, m, n are vectors) but translational periodic- 
ity has been assumed, e is the Laplace variable, and tildes denote Laplace 
transforms. The bath contribution q~n(t) in (3) has been assumed multipli- 
cative for simplicity. It can be proved to be so in simple cases. For the 
linearly interacting standard exciton-phonon model it can be shown to be 
closely related to the characteristic functions given by Lax in his treatment 
of spectra of impurities. (12) The dependence of the memory on temperature, 
phonon frequencies, and exciton-phonon coupling constants can be calcu- 
lated explicitly. Another useful and nontrivial example of ~ / ( t ) ' s  is 

Yg/m.(t)  = 2 V 2 e - ~ ' ( J 2 _ . + ,  + J 2 _ . _ l  + 2Jm_n_lJm_n+l - 2JZ_n 

- - J m - J m - . + 2  -- J m - J . , - . - 2 )  + 8(0rm. (5) 
wherein the J ' s  are Bessel functions of argument 2Vt .  This memory 
function corresponds exactly ( 11.13~ to a simplified form of the so-called 
stochastic Liouville equation (SLE). (13,14) The motion described in (5) has a 
coherent part controlled by nearest-neighbor Hamiltonian matrix elements 
V and influenced by a randomizing or scattering bath parameter a, and an 
incoherent part associated with transfer rates Fmn. The simplest way (1s,~6) of 
describing motion with an intermediate degree of coherence is through 
memory functions (5) without the last term. The corresponding density 
matrix elements Ore. obey the simplified SLE 

dpm. 
dt - iV(pm+t.  + Pm-1. -- Pm.+l -- Pm.-1) -- (1 -- 3m,.)apm . (6) 

and the degree of coherence is measured by the ratio V i a  which is 
essentially the ratio of the mean free path to the lattice constant. We shall 
use (6), and the Y//(t) of (5) corresponding to it, in some of the sequel to 
give a quick-and-ready description of coherence effects. 

2. MOTION IN PURE LATTICES: GRATING OBSERVATIONS 

One way to study the motion of particles in a lattice is to observe the 
time evolution of an initially created inhomogeneity in the particle popula- 
tion. Transient grating observations provide an ingenuous example. (17,18) 
Two laser beams crossed at an angle interfere and thereby produce, 
through optical absorption, a sinusoidal initial population of excitons in the 
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crystal. The time evolution of the amplitude of the population sinusoid is 
measured by using another laser beam as a diffraction probe. The ampli- 
tude suffers loss in time as a result of the exciton motion as well as of its 
decay. Motion characteristics, such as the degree of coherence and the 
magnitude of the relevant transport parameters, may thus be deduced from 
the time evolution of the diffraction signal. 

If we define ~ m n ( t )  = -- ~/Hmn(t  ) for m v a n and d r n m ( t  ) = 
~].~r (t), the GME (2) gives 

dP~(t) pk(t) 
fo'dt'dk(t t')ek(t ') 0 (7) ~ +  r + -- = 

where P~ and ~ ' s  are discrete-Fourier transforms of Pm and a/,~. 
Whereas most situations require a Fourier inversion of the solution of (7) in 
order to extract the physics, it is not necessary in the grating context. The 
Fourier transform pk (more precisely, the square of P~) is itself the grating 
signal! A universal model-independent relation between the observed signal 
Pk(t) and the memory functions is thus provided by (7). Explicitly, 

ffn(r 1 - t - ~ ( c ) ] - I  u (8) 

where we have replaced k by 7, the grating wave vector. As the latter is 
given by 

= (47ra/?t)sin(O/2) (9) 

where a is the lattice spacing, X the wavelength of excitation, and 0 the 
angle of crossing, it is possible, at least in principle, to span the full ~ space 
experimentally and thereby to deduce the ~z/,,, (t)'s or  ~//mn ( t ) ' s  and thus 
the entire dynamics of the exciton. Charts of memory functions and the 
corresponding transient grating signals have been constructed (~1.18) on the 
basis of this relationship between P~'s and sd k's and an explicit practical 
prescription to obtain the memories from the observed signals has been 
given. 

To appreciate the effects of transport coherence on grating signals one 
may calculate the latter for the simple exciton system governed by (6). The 
signal is found (19) to be generally 

Pn(t)/Pn(O)= e-t/~[1- e - ~  fotdue~(t~-~5~/2Jl(yU)] (10) 

where y = 4Vsin(~/2), but reduces to a simple J0 form 

P~( t)/ Pn(O) = e-'/~Jo[ 4 Vt sin(~/2)l (11) 

in the purely coherent limit when a = 0, signifying no scattering or bath 
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interactions. Its oscillations are damped out as t~ is increased, and in the 
completely incoherent limit a ~ oo, V o  ~ ,  V2 /a  = F with F finite, it 
becomes the familiar exponential with the exponent [1/~-+ 4Fsin2(,//2)]. 
The oscillations of J0 in (11) can be immediately understood as arising from 
overshooting tendencies of the sinusoidal inhomogeneity in the coherent 
limit. These tendencies are damped out as scattering is increased. 

3, MOTION IN DEFECTIVE LATTICES: CAPTURE BY TRAPS 

An obvious way of studying exciton motion is to start them at one end 
of a crystal by illumination and to capture and detect them at the other 
end.(11) This kind of capture experiment, although interesting and useful, 
will not be reviewed here for reasons of space limitation. Consider, instead, 
the bulk-quenching system consisting of a crystal doped in the bulk with 
traps, i.e., guest molecules. Excitons moving in the host crystal are trapped 
when they wander near, or within the influence of, the traps. The latter 
decay radiatively in a frequency range different from that of the host 
molecules, making detection possible. An appropriate evolution equation is 
(2) with the term - C~'r6m,rP~(t) appended to its right side. The r's denote 
host sites which are trap-influenced. When the exciton reaches one of them 
its probability decays at rate c into the traps. It is possible, and sometimes 
important, to study a variety of more sophisticated trapping models (2~ but 
here we shall restrict ourselves to the above simple one. The "solution" of 
(2) with the trapping term may be written in the Laplace domain as 

Pm( ) ' " ' " = - , - 0 2 )  
r 

where ( =  c + I/T,  the homogeneous solution ~n~m_n(t)Pn(O) in the 
absence of traps is denoted by ~/m(t), and ~m(t) is the propagator for the 
trapless decayless host. 

We first study the effect of coherence by considering the dilute case, 
specifically the case of a single trap. (2~ The summation in (12) is restricted 
then to a single term. The case m = r of (12) yields an explicit solution of 
/~(c) and its substitution in (12) gives all Pin's. The host luminescence 
intensity is proportional to nil(t)=--~mPm(t), the probability that the host 
is excited at time t. It is given from (12), for uniform initial illumination, by 

P 

Here O is the relative concentration, i.e., the ratio of the number of 
trap-influenced host sites to N the total number of host sites, and thus 
equals 1/ N. 
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The observable nH(t ) requires the inversion of the Laplace transform 
in (13). This, however, is not the case for the observable ~H, which is 
known as the quantum yield of the host, and is defined as the ratio of the 
total number of excitons emerging radiatively from the host as photons to 
the number initially put into the host through illumination: 

~ z  = 1 - ( l / c )  + ~ 0 ( 1 / ~ - )  (14) 

The effect of transport characteristics on the luminescence intensity 
and on the yield is felt through ~0 in the above expressions. An evaluation 
of ~0(e) or ~o(1/~-) may always be carried out from the memory functions, 
through the relation, with d as the number of dimensions, 

+ (15) 

For the simple SLE model of (6), ~0 is found explicitly (2~ to be a 
combination of elliptic integrals and the corresponding plots of the yield 
are available showing dependence on the coherence parameter Via.  

Having explored the coherence theme in exciton capture phenomena 
by studying the exact single trap solutions, we now turn to the multitrap 
case. Obviously, an exact solution of (12) is out of the question except when 
the number of traps is small or when they are systematically arranged, e.g., 
periodically. It is, however, possible to make considerable headway into the 
problem by using the fact that the observables, viz., nH(t ) and ~n, require 
for their solution the quantity ~'Pr(t) rather than the individual occupa- 
tion probabilities Pro(t). Thus, summing (12) over all sites m, 

1 [1-c~r 'Pr(E') l  (16) = -7 

The quantity ~,'rPr(t), which is the probability that the trap-influenced sites 
are excited, is obtained by summing (12) over those sites. 

= - Vs(E )Ps(c) (17) 
r r s 

where we introduce the function v s = ~];t~_~, which is the sum of pro- 
pagators from the trap-influenced site s to all the trap-influenced sites. If 
we now make the assumption that v, is independent of s, (17) is immedi- 
ately solved in terms of v. Indeed, all the single-trap expressions such as 
(13) and (14) now apply exactly to the multitrap case with the simple 
replacement of the self-propagator q~0 by the propagator sum v. 

The function u(t) is equal to qJ0(t) for short times but at large times 
tends to p rather than to 1IN as does qJo(t). In an infinite system with finite 
o, we see that ~o tends to zero as t ~ oe but p tends to the finite value O- It 
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is possible to show (21) that v(t) may be rewritten as 

v(t) = ~ proem(t) (18) 
m 

which is a sum over a// host sites of the product of the dynamic host 
quantity +re(t) which describes exciton motion in the host and the static 
trap quantity Pm which describes trap placement within the host. The 
former is the propagator and the latter is the probability that the mth site is 
trap-influenced given that the zeroth site is trap-influenced. If no correla- 
tion exists in trap placement, (18) reduces to 

v ( t )  = + (1 - 0) 0(t) ( 1 9 )  

If the other extreme applies, i.e., if the traps are placed periodically, v(t) 
equals the self-propagator for a smaller lattice of sites 1/p. As an explicit 
example, the case of periodic traps in one dimension can be shown to lead 
to, where cosh~ equals 1 + E/2F, 

tanh(~/2) 
~lT(c) = tanh(~/20) (20) 

Although it possesses a certain kind of mean-field character, the v-function 
approach to exciton capture appears to be quite powerful. Further conse- 
quences and its relations to other existing approaches ~22-25) are being 
worked out. 

4. MOTION IN THE PRESENCE OF MUTUAL ANNIHILATION 

Two excitons approaching each other may undergo mutual annihila- 
tion as a result of their interaction. The basic observables are, as in the 
capture case, the quantum yield ~ and the luminescence intensity which is 
proportional to the excitation probability n(t). The natural way to analyze 
this phenomenon is by considering the many-particle system and studying 
the evolution of the system-point in the corresponding higher-dimensional 
space. An exact solution can be obtained C27) for the two-exciton system. 
The annihilation problem is transformed into a trapping problem in the 
space of twice the number of dimensions as the actual system. Thus the 
quantity Pm,n(t), the probability that the first exciton occupies site m and 
the second exciton occupies site n, would obey, in the simple case of 
incoherent motion with nearest-neighbor rates F and of destruction rate 2b, 

dPm,n 
dt = F(Pm+l'n + Pm-l,n + Pm,,+l + Pm,n-I - 4Pm,n) -- 8m,n2bPm,n 

(21) 
It is assumed for simplicity that annihilation occurs at rate 2b when the two 
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excitons occupy the same site. The region m -- n is thus a trapping region in 
the higher space. Space limitation does not allow us to show even the full 
starting equations (27) for the problem. Suffice it to say that two other 
equations, one for the probability that there is only a single exciton and it is 
at site m, and the other for the probability that there is no exciton left in the 
system are written down and solved along with the generalization of (21) 
for arbitrary degree of coherence (and also for longer annihilation range, if 
required). The solution is exact and results in expressions for the experi- 
mentally accessible quantities of 0 and n(t). Furthermore, it is possible to 
study, with its help, the range of validity of the traditional bilinear equation 
which describes annihilation through a term -vn2(t), and also to derive 
expressions for the proportionality constant V (the annihilation constant) in 
terms of microscopic parameters. The general result is 

[ 1  1 -~ T = v ~ +qT0(1/r ) (22) 

where v is the volume of the unit cell. Once again we see how the memory 
functions of (2), which enter into the propagator through (15), influence the 
physical measurable, in this case the annihilation constant. On the basis 
of (22) explicit calculations of T showing the effects of dimensionality, 
of lattice structure, and of the degree of coherence have been per- 
formed.(11,26,27) 

While the annihilation theory outlined here is exact for arbitrary 
magnitude and kind of exciton motion, it is not directly applicable to very 
high exciton densities. Since the latter present a true many-body problem, 
radically new approaches must be introduced. A problem which is related 
to the exciton context only in a distant way will now be described briefly 
along with its solution. One hopes that insights into exciton annihilation at 
high densities will be gained by its study. 

The problem concerns pycnonuclear reactions in the interior of stars. 
Every one of the N sites of a lattice is initially occupied by a particle. The 
particles do not move but may undergo mutual pairwise annihilation if the 
participating particles occupy neighboring sites. The problem can be ap- 
proached by studying the system evolution in configuration space. An exact 
solution is possible for one dimension. One gets (28) 

f1(t) = exp[ -2 (1  - e-nt)]  (23) 

as the surviving fraction of particles at time t, R being the rate of 
annihilation. An approximate method of solution has been applied to study 
the problem in dimensions other than 1 and results in 

f,(oo) = (2d - 1) -(a/a- 1) (24) 
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for the eventual ( t ~  ~ )  limit of the surviving fraction in d dimensions. 
Equation (24) gives fl(oo) as 5 -3/2= 0.0894 in three dimensions, 1/9 = 
0.1111 in two dimensions, and reduces to the exact result e -2 = 0.1353 (see 
23) in one dimension. Efforts are under way to combine this problem which 
has no motion but has high particle densities with the true exciton problem 
described earlier which has a complete description of motion but is valid 
only for low densities. 

5. MOTION ACCOMPANIED BY VIBRATIONAL RELAXATION 

One of the important questions in exciton transport is whether exciton 
motion occurs before, during, or after vibrational relaxation. The master 
equation approach to this problem (29~ addresses Pm,,(t), the probability 
that the exciton is at the ruth site, and the system is in the vibrational state 
/z. Combined transition rates describing relaxation and motion are written 
down. The motion rates have the same site dependence as the tradition 
rates but depend on the system vibrational state. The vibrational rates are 
assumed to correspond to the representation of the molecule as a harmonic 
oscillator and to a bath interaction which is linear in the oscillator displace- 
ment. By using techniques originally developed (30) for the pure relaxation 
problem and extended (31) for the luminescence-relaxation situation, explicit 
solutions can be obtained (29~ for various initial conditions in the vibrational 
manifold. They include 6 functions, Poisson distributions, and Laguerre 
polynomials, corresponding, respectively, to laser excitation, broad band 
excitation at zero temperatures, and broad band excitation at nonzero 
temperatures. 

The concept of time-dependent motion rates emerges from this analy- 
sis. Thus the counterpart of the master equation (1) in the presence of 
vibrational relaxation is 

dPm(t) Pm(t) 
+ - -  -- ~ [Fmn(t)Pn(t ) - Fnm(t)Pm(t)] (25) 

"1" n 

The transition rates show a time dependence and a curious effect at long 
times. Their initial values are determined by the excitation condition and 
they change in time as the relaxation or thermalization process proceeds 
during motion. As t---> ~ ,  they do not tend to their thermalized values but 
are usually smaller. This rate-depression phenomenon is a general result of 
the interplay of relaxation and exciton motion. This theory has been 
applied to study the dependence of transfer efficiency on initial excitation 
wavelength and the effect of vibrational relaxation on transient grating 
signals. In simple cases Fmn(t ) is of the form Fmn~(t), the temporal behavior 
of the rates being independent of the spatial character. The propagators of 
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(25) are then trivially seen to be the same as those of (1) with the 
substitution t ~ ftodt' q~( t'). 

Explicit forms for q,(t) have been calculated. (29) The resulting pro- 
pagators are being used to study exciton phenomena such as capture, 
grating observations, and annihilation, in the presence of the interplay of 
vibrational relaxation and motion. 

6. REMARKS 

We have seen how generalized master equations find natural applica- 
tion in the study of exciton motion (Section 2), capture (Section 3), and 
annihilation (Section 4), a common theme in that treatment being the effect 
of transport coherence. We have attempted a unification of wavelike or 
ringing (coherent) behavior on one hand and of diffusive or hopping 
(incoherent) behavior on the other. We have emphasized the calculation of 
memory functions from microscopic interactions as well as their direct 
connection to experimentally observable quantities. We have also briefly 
reviewed an approach to exciton capture by many traps, a static annihila- 
tion problem and shown how the interplay of relaxation and motion can be 
investigated. 
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